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Abstract—In this paper, the dynamic interaction between two interface cracks, in a three-layered
plate subjected to antiplane stress fields, is analytically studied. The problem is formulated in terms
of a coupled set of integral equations, which are then solved by expanding the unknown crack
opening displacements in a complete set of Chebyshev polynomials. The method is coded in a
FORTRAN program and numerical results for a sample problem are presented. The results show
that for the problem studied here one crack always reduces the crack opening displacement of its
neighboring crack.

L. INTRODUCTION

In recent years the dynamic analysis of crucks in multilayered solid materials have received
considerable attention in the literature devoted to fracture mechanics in view of the rapid
increase of coated and multilayered plates in engincering applications. Investigators who
studicd different aspects of this problem include Loceber and Sih (1973), Keer and Luong
(1974), Luong et af. (1975), Atkinson (1977), Srivastava et al. (1978), Neerhol (1979), Sih
and Chen (1980), Kuo (1982), Yang and Bogy (1985), Kundu (1986), Bostrom (1987), to
name a few. In all these works only one crack has been considered in the problem geometry.
The present state of knowledge still facks a rigorous analytical technique for the dynamic
analysis of the interaction among several interface crucks.

In this paper the transient response of two interface cracks in & multilayered plate
under aotiplane loading is analytically studied. Cruck opening displacements (CODs) of
both ¢racks arc computed for different time-dependent loadings at the plate surface. COD
is computed by both considering and neglecting the interaction effects. Comparisons
between these two sets of results show how significantly a crack can affect the behavior of
its neighboring crack. Since the stress intensity factor (K) is directly related to COD, exactly
the sume behavior would have been observed for K if it were computed instead of COD.

The analytical formulation is developed based on Betti's reciprocal theorem applied
to two problem geometrics, one is the scattered field problem and the other is Green's
problem which is a flawless plate subjected to a concentrated line load. Thus a set of integral
cquations are formulated with the CODs as the unknowns. Then CODs are expanded in a
complete set of Chebyshev polynomials. The unknown coefficients of these expansions are
obtained by satisfying the stress free boundary conditions of the crack faces. Similar
techniques were used by Neerhoff (1979), Yang and Bogy (1985), Kundu (1986} and
Bostrom (1987) to solve wave scattering problems by a single interfuce crack. In the problem
considered here, since there are two cracks in the problem geometry it gives rise to a set of
coupled integral equations unlike the previous works with one crack only. The coupling
terms represent the crack interaction effects.

2. PROBLEM FORMULATION

A plate is made of threc homogencous, isotropic, elastic layers, 1, 2 and 3, of thicknesses
i hyand hyas shown in Fig. 1. p; and f; are material density and shear wave velocity of
the jth layer, respectively. Plate dimensions along the x- and z-directions are infinite. Two
Griffith cracks of lengths 2a, and 2a, are located at the two interfaces at y = y,(= k) and
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Fig. |. Geometry of the problem. A three-layered plate containing two interface cracks is subjected
to an antiplane loading.

va (= hy+h,) with a distance  between the crack centers. The two surfaces of the plate at
v=0and vy (= h,+h,+h,) are subjected to an antiplane stress ficld ©,. = f(#) as shown
in the figure. The plate and crack geometries and the surface loadings are independent of
the z-direction.

To solve this problem, first we nced to solve two cannonical problems. The two
problems are then combined by Betti's reciprocal theorem. First the problem is solved in
the frequency domain, then the transient response is obtained by Fourier inversion of the
spectrum.

2.1 Cannonical problem 1 : flawless three-lavered plate subjected to an antiplane stress field
The geometry of this problem is very similar to Fig. I, the only difference is that there

1s no crack at any interface. The time harmonic antiplane stress ficld ot time dependence

¢ acts uniformly on the two surfaces of the plate. The displacement field in the jth layer

of this problem geometry is given by the wave equation solution

U ,=A,c* +8 ¢ " (n

7

1514

where &, is the S-wave number of the jth layer. The time dependence ¢ ' inegn (1) and
in all subsequent equations is implied. The unknown coetlicients 4, and B, can be evaluated
from boundary and interface conditions. Expressions ot 4, and B, are given in the Appendix.

2.2, Cannonical problem 2 : a line load in a three-layered flawless plate

The geometry of this problem is shown in Fig, 2. A time harmonic line load is acting
at a point P(x,.v,) as shown in the figure. The solution of this problem is available in the
literature on wave propagations in multilayered solids (Kundu, 1986). The displacement
ficld in the jth layer generated by this line load located at the nrth luyer is given by

.l

i | I2 ) cm,ir vl v v ]
U = o Oy o=+ C, "+ D, € w,.l} e % dk (2)
drp, ) n,

5

Y, = (kL —k*' 7 for k, >k
Wk*—~k})': for Kk, <k

1, is the shear modulus of the jth layer and d,,, is the Kronecker delta function which is |
form = jand O form # j.
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Fig. 2. A peint load in the three-layered plate.

Unknown coefficients C; and D, can be obtained from stress-free boundary conditions
and continuity conditions across the interface. Expressions of these cocflicients are given
in the Appendix. Superscript G on U, indicates U, corresponding to Green's elastodynamic
state.

2.3, dpplication of Betti's reciprocal theorem

Let us consider two solution states S and G. State S corresponds to the scattered ficld
of the original problem. So when S is added to the displacement ficld of the cannonical
problem 1 the solution state of the problem of interest is obtained. The cannonical problem
2, Green's clastodynamic stale, is referred to as state G. Using Betti'’s reciprocal theorem
these two states can be related in the following manner:

J Fu dV+J T{US ds =j FOUS ‘”"*j TOUS dS (4)
¥ A ¥ Al

where F,is the body force per unit volume acting in the v-direction, 7, is the surface traction
per unit areit acting in the x-direction, and U, is the displacement in the x-direction.
Superscripts S and G represent states S and G respectively. However, the body foree for
state S is zero and tor state G it is equal to 8(F —7,) acting in the z-direction. 7, is the position
vector of point P and 7 is the position vector of any point of interest. For an antiplane
probiem all non-zero forces and displacements act in the z-direction. So for our problem
the general equation, eqn (4), takes the form

J T3U% dS = U%’,,)-&-J TCU® dS (5)
A 5

where Uis the particle displacement and T is the shear stress. Since the problem is invariant
in the z-direction, surface integrals may be reduced to line integrals. This line integral is
carricd out along a contour, shown in Fig. 3.

The integral on the left-hand side of eqn (5) vanishes because 7% is zero on C,, C,. C;.
Cqand the integrals of 75U on £} and X cancel each other for j = | and 2. The only
non-zero term comes from the integral on the right-hand side of eqn (5) along the integration
paths £ and X; . After some simplification, eqn (5) is reduced to

d+a,

USGF,) = f $TO det | Ylx=d)T dx (6

where $(x) and (x) are CODs of the two cracks and are defined as
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Fig. 3. Contour of the line integral (eqn ($)).

B(x) = US(x i) = US(x,n))

s R s (7
Y(x) = UP(xv3 )= U (x.vy).
The expressions for 79 at y = y, and y, may be obtained from
: . : AUY
Ty = T(xoyry) = TS(vr)) = p, —({‘f (8a)
and
“(; «; H v (3 (/(:;
T '(.\'.y:) =17 :’(.\‘,y: ) =17 |’(.\'.y3 ) = “‘ (Sh)
(1 -

where U4 is given in egn (2).

If point P 1s now taken on the crack surface, the displacement of that point can be
obtained from eqn (6) if Ty, $(x) and (x) are known. Combining cqns (6) and (8) the
displacement field at x,, y, (3, = ¥, or y;) is oblained

u

. l 1 £
Ui(x,.p,) = 47zj (f)(.\')f (e =9y (Cy = DL)Y e*™ % dk dx

1 dru, I3
- 4TIJ lﬁ(,\«)‘[ {em 4y (CrQ2—D2Qy )} e dk d (9)
dou, 1.

where
0, =",
The scattered stress field can be obtained from the displacement field of egn (9). Then

it is cquated to the negative of the incident stress field along the crack surfaces (3 =y,
lx] < «;and v = v |X| < «s, X = x—d) to obtain

1 g © v
/\":(A:—B:) = -inj (}‘)(\)J1 Fl(k) Clk(‘*") d/\' d,\‘

o -

+ J;f : '/’(«UJ Fi(k) e*V % dk dX for —a, <x, <a, (l10a)

and
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1 [ x ) :
ko (4:0.-8,07") = EJ‘ ¢(-\‘)J Fy(k) e*tx- %) -ikd dqf dx
L[ » A
+ GJ t{f(X)J Fyk) e®¥-% dk dX for —a,< X, <a, (10b)
where

. @
L%

r

Fik) = ~n,

Y= ¥y

Ve =¥y

Fy(k) = *'I:{Q:*—l—"(C 0:-D.Q: ')}
{ (1

Fyk) = —n. Q:+l~—(C» }

Fy(k) = "’I:{l ’*‘i;} (C:Q:~D:0: ')}
v, ¢y ars
A B;ineqgns (10) and C,, D, in eqns (11} are defined in eqns (1) and (2). respectively.
Partial derivatives of C; and D with respect to y, at y, =y, and y; are given in the
Appendix.
It can be shown that F (), (j = 1.2,3,4) is imaginary for all real values of &, It can
also be shown that Fu(k) is always cqual to Fyk) and they approach zero as & — o,
However, F(k) and F (k) have the following asymptotic expressions:

X -1A;¢,
hm F (k) = — -
kl-r (k) [ll+;h
(12)
) ._M.;h
lim Fy(k) = — .
k'..:: 4( ) ﬂ‘+g“!

It should be noted here that the integrals involving F,(k) and F,(k) represent the interaction
effects between the two cracks. In the coupled integral equations, eqns (10), the functions
p(x) and Y (x) are yet unknown.

2.4, Computation of the crack opening displacement functions

In order to evaluate the CODs, ¢(x) and (x) are expanded in a complete set of
Chebyshev polynomials

¢(x) z [?’;" ¢’n( }+l '"’:"":" ‘pb-n + }(t)]

B}
(13)
'I’(X) "2:0[';.#’"( )+|5-nﬁ;ll'1/m+l(v)}
where
@2.(x) = sin {2n arcsin (x/a,)}
¥ 2.(x) = sin {2n arcsin (x/a,)} (14)

@204 1(X) = cos {(2n+1) arcsin (v/a,)}

Yamar{x) = cos {(2n+1) arcsin (x/a,)}.
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To obtain the unknown coefficients 2, and y,, both sides of eqn (10a) are multiplied by
@m(x,). then integrated from x, = —a, to a, and both sides of eqn (10b) are multiplied by
Ym(X,), then integrated from X, = —a, to a,. After some algebraic manipulation an infinite
set of linear equations is obtained to solve for z, and 7,

(Kmnzn'*'{‘mn?n) = ——2ik53(~42 - B:)aiémt
t

[~1x ;‘TM"

{(15)
(A[muan+NmnYn) = ~2ikx2(A2Q3—'BZQ; l)a:‘sml
n=1
where for m-+n = even
, (< {F (k) i, } i, S,
Ko =2 . J(k (ka ) dk — —"mn
Jo { k- +k(l‘|+l‘:) (ka)/ tka,) ot om
(- F.(k
Low =2 ——f:(mz Jotka ) tkay) cos (kd) dk
Jo
" {16)
" Fyk)
(‘{nm =2 k"" Jm(ka:)jn(kﬂ,) COs (k(!) dk
Jo
[ [ Fyk) 2igty } 2ip, 8,
N, =2 St LSRN S g (ka) T kay)y dk— T T
Jo { k= kQua+py) Tmtka)Jy(kaz) dk flod ity m
and for m+n = odd
A’fﬂﬂ = N!”ﬂ‘ = ()
I O {5 .
Loy = 21[ kl.c(l )J,,,(ka,)J,,(ka:) sin (kd) dk (17)
i

. © F, !(
M, = -—21[ «/\(f) Juka) S ka,) sin (kd) dk.
]

From cqns (16) and (17) it can be clearly seen that A and N matrices are symmetric but
the L and M matrices are not. However, L and M satisfy the following refations :

M,, for m+n=cven
L"m = — A/!nm !‘Or m + = Ddd-

Equations (15) have infinite series in their expressions, however, they can be terminated
after a finite number of terms without introducing any significant error. Then «,, 7, can be
obtained from a finite set of lincar equations and finally ¢(x) and ¥(x) can be computed
from eqns (13) without any difficulty.

3. COMPUTATIONAL ASPECTS

The main task involved in obtaining the solution of this problem is the computation
of the integral expressions of K,.,. L., M., and N,.. The major difficulty in computing
these integrals comes from the fact that a finite number of poles or singular points lic on
the real path of integration. These correspond to the roots of the denominator of the
integrands. This denominator is the surface wave dispersion function of the problem
geometry. These poles are removed from the complicated integral expressions in the same



Dynamic interaction between two interface cracks in a three-layered plate 33

manner as done in a previous paper (Kundu, 1986). Then the poles are confined to relatively
simpler integrals having the following forms:

Intkaddyka)
I—L ————kz_p i=1lor2 (18)
,(=f I (""Vk(_"“/) S D k. ij=120r21; i) (19)
0
ka,)J,(k
"=£ =) A(zf}sm ¢ o ij=L2o0r2l; i#j (20)

where p is a pole of the integrand on the real k-axis. Integrals in eqn (18) have been
evaluated (Kundu, 1986)

741
—HP (pa)t(pa). m<n
J J (ka)J (ka,) 2p v

)
e &}

il
% H"(pa)J . (pa). m=n

where #1) ts the Hankel function of first kind of order m.

Let us now try to evaluate the integrals of eqn (19). It was shown (Kundu, 1986) that
form = n, J, (ka) TP (ka) vanishes at k = 0 for both i = 1 and 2. So for m = n the numcrator
of the integrand of eqn (19) can be written as

S (ka) + HD (ka)l, (ka)) [e* +¢ ™). (22

Clearly for large k, 1 (ka,) ¢* = O(c™“*), so it goes to zero when  takes large positive
imaginary values. Similarly #75? ¢ %/ becomes zero when k takes large negative imaginary
values. So integrals containing £.) ¢ can be evaluated by the contour integration method
closing the contour in the first quadrant and integrands containing ' ¢*/ should be closed
in the fourth quadrant. But the term H{(ka;) e % = O(e**“~*) for large k, so contours
of the integrals containing these terms should be closed in the first quadrant if ¢, >  and
in the fourth quddrant if a; < d. Following the same logic the contours of the integrals
containing H'(ka;) e* should be closed in the first quadrant if ¢, < d and in the fourth
quadrant if ¢, > d. If m < n, J, (instead of J,) should be expressed in terms of Hankel
functions and then those expressions can be integrated by the contour integration method
as discussed above. Integrals of eqn (20) can also be evaluated following the same technique.
Final results of these contour integrations are given below

IL=il,+1,+15)

(23)
L=hL+I1,—-1,
where, form = n
I = %Jm(pa,)fi:”(pa,) o' (24a)
0 for a;>d
I = (24b)

‘%Jm(pa,)ﬂf,”(pa,-) e for a;<d

SA5 24:}l-C
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Table 1. Matenial properties and dimensions of the specimen

Laver Laver Thickness. Density, S-Wave speed,
number material h (mm) plgem ") Bikms )
| Copper 1.3 89 2.3
2 Steel 0.3 79 3.20
3 Quartz 0.3 2.2 377

n Chy ~1pd y
Jolpa)H (pa,) e for u,>d

[.=<4p (24¢)
0 for «,<d
and form < n
[ = " IApa Y H  (pa) ™ (25a)
1 gp P f 25
[() for a, >d
fy=4rp . (25h)
L/}J,,(pu,)Ilf,,"(/m,) e for o« < d
5 JApa YH ) (pay ¢ for a, > d
Il — 4/, n 1 ” 1 i (ZSC)
0 for «, < d.

4 RESUILTS

The method discussed above has been implemented ina FORTRAN program. Results
for a sample case are presented i this section, The plate specimen for which numerical
results are given is made of copper, steel and quartz. A 2 mm crack is located at the copper
steel interface and o second crack of Tength 4 mm is located at the quartz steel interface. The
distance between the centers of the two cracks is 0.5 mm. Propertics of the plite materials
are given in Table 1.

In the results presented in Figs 4 -8, length, time and frequency units are in mm, g
and MHz, respectively.

The poles of the integrands on the real A-axis are shown in Fig. 4. It should be noted
here that the number of poles increases with increasing frequency and so does the computing
cost.

Profiles of CODs for different exciting frequencies are shown in Fig. 5. The rate of
convergence of the proposed method cun be obscrved in this figure. x, and 3, of egn (13)

4.00 §.00

SINGULAR POINTS
2.00

2.00 2.50

P00

.00 0.50 1.00 1.50
FREQUENCY (MHZ)

Fig. 4. Singular points on the real k-axis of integration as a function of [requency.
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Fig. 5. Spectral amplitudes (in mm-ps) of crack opening displacements of the 2 mm long crack at

different exciting frequencies. Left-hand column: the top two figures are for 0.04 MHz and the

bottom two figures are for 0.6 Mz exciting frequencies. Right-hand column : all four figures are

for 1 Mitz frequency. The number in cach figure indicates the number of terms considered in the
series expansion of ¢{x) ineqns (13).
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Fig. 6. Crack opening displacements at the center of the crack for the impact loading (eqn (26))
with duration t = § gs. The top row is for the 2 mm crack and the bottom row is for the 4 mm
crack. Left-hand column: COD spectral amplitudes in mm-gs. Right-hand column: COD time
histories in mm. In each figure the bold curve represents the actual COD and the thin curve

represents the COD of the same crack in the absence of the other crack.
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are obtained by solving cqns (15). Logically, it may be stated that a large number of terms
in the expansion of CODs ¢(x) and ¢{x) should give accurate results. But then the size of
the A, L, A and N matrices increases and so doces the computing cost. However, it can be
seen in Fig, 5§ that it is not necessary to consider more than five terms in the COD expansion
for frequencies up to 1 Mz, In the top two figures of the left-hand column of Fig. § the
amplitude of the COD ${x) is plotted for an exciting frequency of 0.04 MHz. The top figure
is for a three-term expansion and the second figure, for a five-term expansion. The bottom
two figures of the left-hand column show the amplitude of ¢(x) for three- and five-term
expansions at a frequency of 0.6 MHz. Clearly for both these frequencies the three-term
expansion of ${x) can produce accurate results. In the right-hand column the COD ¢(v)
is plotted for a frequency of | MHz for two-, three-, four-, and five-term expansions of
). For this frequency it can be siid that after four- or five-term expansions the result
converges. Similar convergence is observed for ¢(x). For all plots of Fig. 5, the Fourier
transform Fw) of the exciting load has been equated to 1.
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Fig. 8. Sume as Fig. 7 but the rise time (t/2) of the step load is 1 us.
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The response of the two cracks to impact and step loadings are shown in Figs 6-8. For
impact loading the load starts from zero, then reaches a peak value and finally drops down
to zero. In step loading the load starts from zero and gradually attains a maximum value.
The following functions are considered as loading functions.

Impact loading

16P*(1—1)°t%, 0<t<t
> (26)

[0 = {0. .

32 . 12 ; A,
Flw) = IZ[{— i +i(t'— : )} e"‘"—{.—r +l(t'— l%)}] 27N
Tw w w w w

Step loading

T

6P (1—1)'t ™%, 0<t1<12 ,
SO =1, 212 (28)

F — 6P f.‘ 5( ) i 2+ 2_4> ciwr/l'_l_ 2 l(_l_2 T2> 9?_}] (79)
@)= [ g™~ g\t w’ [\’ w) ] -

In the above cquations P defines the peak value of the plate surface excitation stress. In
subscquent calculations, P is sct equal to 1 kKN mm ~ % © is the duration of the impact load.
The sharpness of the impact can be increased by decreasing t but keeping P constant. The
risc time of the step load is equal to 1/2. Here too a sharp rise in loading can be modeled
by decreasing t but keeping P constant. Results arc given for v = 5 and 2 ps.

In cqn (29) F(w) is not suitable for numerical evaluation because it contains a delta
function and a singular term which behaves like 1/w near @ = 0. This difticulty is avoided
by scparating the static part and shifting the response history vertically as discussed by Mal
et al. (1984).

In Figs 6-8 CODs at the center of the 2 and 4 mm cracks are plotted in the top and
bottom rows, respectively. Displacement spectra are plotted in the left-hand column and
time histories in the right-hand column. Time histories arc obtained numerically by inverting
the response spectra using FFT (fast Fourier transform) routine. In all these figures two
curves are plotted, one with a bold pen and the other with a thin pen. The bold curves are
actual plots of COD and the thin curves are the COD plots when the interaction between
the two cracks is neglected. In other words thin curves represent the response of one crack
when the other crack is absent. They are obtained by setting the coupling matrices L and
M equal to a null matrix.

In Fig. 6 COD for the impact load with duration t = 5 us is shown. The difference
between the thick and thin curves is more for the 2 mm crack (top row) than the 4 mm
crack (bottom row). It is justified since the effect of the larger crack on the smaller crack
should be more than the effect of the smaller crack on the larger crack. In the time history
plot of the top row it can be seen that in approximately 11 us the bold curve oscillates three
times and the thin curve oscillates four times. The presence of the second crack reduces the
stiffness of the plate and hence the natural frequency of vibration of the crack opcening is
reduced. It can also be scen that the maximum crack opening increases when the interaction
cffect is neglected. So for the model studied here, the presence of the sccond crack reduces
the possibility of the propagation of the first crack.

The response of the two cracks for step type of loading with rise time t/2 = 2.5 us is
shown in Fig. 7. Here again the bold curves represent the actual response and the thin
curves represent the crack response in the absence of the other crack. Here also the greater
difference between the two curves is observed for the smaller crack. In the top row in about
10 us the thick curve oscillates three times and the thin curve oscillates four times. Thus
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the decrease in stiffness and natural frequency in the presence of the second crack can be
observed in this figure also. The presence of the second crack significantly reduces the
maximum COD of the smaller crack. Another interesting feature of the top figure should
be observed here. the bold curve oscillates for a longer period of time than the thin curve.
It is probably due to the fact that the free surfaces of the second crack restricts to some
extent the geometric dissipation of energy from the first crack.

Figure 8 is similar to Fig. 7. the only difference here is that the rise time for the step
load is | us instead of 2.5 us. Hence the dynamic effect in this figure is more than that in
Fig. 7. Other observations. i.e. differences in the plate stiffness and COD magnitudes. in
the presence and absence of the sccond crack are similar to the previous figure.

5. CONCLUSION

In this paper the interactions between two interface cracks in a three-layered plate is
studied analytically, when the plate is subjected to a time-dependent antiplane shear stress
ficld. This new technique is an extension of the technique used to solve the single interface
crack problem (Kundu, 1986). The method developed here is found to be very efficient.
quickly converging to a negligible error.

A sample problem involving two interface cracks in a three-layered plate is solved by
this technique. The numerical results show that the dynamic reponse of a crack is sig-
nificantly influenced by the presence of a neighboring crack if the ncighboring crack is
fonger. For the plate model studied here it is found that the presence of one crack always
reduces the COD of its neighboring crack.
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APPENDIX

Expressions of 4. B,, C,and D, (j = 1.2.3) of eqns (1) and (2) are given here. Partial derivatives of C: and
D, with respect to v, (see eqns (11)) are also delined here
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Fleny is the Fourier transform of the applied stress ficld on the plate boundary and e is the frequency. o, ff, p,
and &, are defined in the text
Now Cand 1), of eqn (2) are defined as

l"l"'.:‘ . . . Cip
Y W Fap.Q -+ PP

Py~ I"l ,

W )P Q- (F + Fapy (AD)
n.M

¢, I,
Cr=D= ',.e'l ((':”“3 - )
"l(Ql"I) e

. " P
=00 = T (C0-p.00 ]
Cy=D,0, "‘“_,_,Q»‘)( :0: O +.'I>

D, Qs

where
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17, 1s detined in eqn (3).
Partial derivatives of Cy and 0, with respect to y, have the following forms:

oc, i . . .
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oD, i (A3)
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where M. F\, Fo Fo Fo Qu Prand py are defined in egns (A4). Clearly if , = v, then Py = |, p, = Q@ and if
r=ythen Py=Q,py =1



